WEISSBUCH

SICHERE DYNAMISCHE VERNETZUNG IN OPERATIONSSAAL UND KLINIK
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vorbemerkung</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Executive Summary</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Einführung und Hintergrund</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Einordnung in das OR.NET-Projekt</td>
<td>9</td>
</tr>
<tr>
<td>3.2</td>
<td>Motivation Weissbuch</td>
<td>11</td>
</tr>
<tr>
<td>3.3</td>
<td>Begriffsdefinition</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Allgemein</td>
<td>12</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Norm</td>
<td>13</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Spezifikation</td>
<td>13</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Standard</td>
<td>13</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Normung</td>
<td>13</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Standardisierung</td>
<td>13</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Interoperabilität</td>
<td>14</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Konformität</td>
<td>14</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Medizinprodukt</td>
<td>14</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Medizinische elektrisches Gerät, ME-Gerät</td>
<td>15</td>
</tr>
<tr>
<td>3.3.11</td>
<td>Use Case</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Ausgangslage</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Einleitung</td>
<td>16</td>
</tr>
<tr>
<td>4.2</td>
<td>Regulatorische Anforderungen</td>
<td>17</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Mechanismen des Risikomanagements</td>
<td>19</td>
</tr>
<tr>
<td>4.3</td>
<td>Stand der Normen und Standards</td>
<td>22</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Strukturen der Normungs- und Standardisierungslandschaft</td>
<td>22</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Standardisierungsorganisationen und ausgewählte Standards</td>
<td>23</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>DIN und DKE</td>
<td>23</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>DICOM</td>
<td>24</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>HL7</td>
<td>26</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>IEEE</td>
<td>29</td>
</tr>
<tr>
<td>4.3.2.5</td>
<td>Continua Health Alliance</td>
<td>31</td>
</tr>
<tr>
<td>4.3.2.6</td>
<td>IHE (Integrating the Healthcare Enterprise)</td>
<td>34</td>
</tr>
<tr>
<td>4.3.2.7</td>
<td>Web Services Discovery and Web Services Devices Profiles (WS-DD)</td>
<td>36</td>
</tr>
<tr>
<td>4.3.2.8</td>
<td>DDS und RTSP</td>
<td>39</td>
</tr>
</tbody>
</table>
4.3.2.9 smartOR OSCB Protokoll ... 40
4.3.2.10 Medical Device Plug-and-Play (MDPnP) 43
5 Analyse ... 45
 5.1 IHE als mögliches Bindeglied ... 46
 5.2 OSCB, DPWS und MDPnP .. 46
6 Handlungsempfehlungen ... 48
7 Abkürzungsverzeichnis ... 50
8 Quellen und Literatur .. 54
1. VORBEMERKUNG

Anmerkungen zu diesem Weißbuch:

Die Schutzrechte, der in diesem Weißbuch verwendeten Bilder, Schaubilder und Grafiken wurde nicht überprüft, da seitens des Auftraggebers mitgeteilt wurde, dass diese durch eigene passende Darstellungen ersetzt werden sollen. Vor einer Veröffentlichung ist darauf zu achten.

Bei Interesse wenden Sie sich bitte an:
Johannes Dehm
VDE MedTech
Tel: +49 69 6308-344
E-Mail: Johannes.Dehm@vde.com
Die Beschreibung der Ausgangslage (siehe Abschnitt 4) zeigt, dass sich bisher kein Standard zur Kommunikation im Operationssaal durchsetzen konnte.

In der darauf aufbauenden Analyse werden insbesondere zwei Feststellungen getroffen:

1. Einige bestehende Standards, insbesondere OSCB und DIN EN ISO 11073, bieten bereits eine gute Ausgangsbasis für die Vernetzung von Medizingeräten, sind jedoch noch unvollständig und müssen entsprechend erweitert werden.

2. Es fehlt ein „vertikaler“ Standard, der die bestehenden Bausteine (OSCB/DIN EN ISO 11073 sowie angrenzende Standards wie DICOM und HL7) so integriert, dass ein schlüssiges technisches Gesamtkonzept entsteht, das im OP umgesetzt werden kann.
Daraus werden in den Handlungsempfehlungen die folgenden Schlüsse gezogen:

- OSCB ist noch unvollständig und sollte erweitert werden (u. a. weitere Dezentralisierung der Architektur, Etablierung eines Patientenkontextes, Integration mit DICOM und HL7). Die Verwendung einer SOA-basierten Architektur wird übernommen.

 Statt der bestehenden DIN EN ISO 11073-Transportprotokolle soll auf eine webbasierte Variante zurückgegriffen werden, die gut zum SOA-Modell (s. o.) passt.

- IHE stellt eine ausgezeichnete Basis für den fehlenden „vertikalen“ Standard dar. Hierfür müssen Use Cases erarbeitet werden, die dann auf die zu vervollständigenden OSCB/DIN EN ISO 11073 zurückgreifen.

Handlungsempfehlungen für den Bereich Risikomanagement werden aufgrund des derzeitigen Projektstands in späteren Fassungen der Normungs-Roadmap berücksichtigt.

Derzeit werden die Medizingeräteausstattungen im OP von herstellerspezifischen Lösungen weniger Anbieter dominiert. Hier kommen firmeneigene Kommunikationsprotokolle und Vokabularien zum Einsatz, die es im Regelfall nicht erlauben, Geräte anderer Hersteller anzubinden.

Daraus ergeben sich verschiedene Vor- und Nachteile:

Einerseits besitzt die Ausstattung eines OPs durch einen oder wenige Hersteller den großen Vorteil, dass das Gefahrenpotenzial für Patienten unter Umständen geringer ausfällt als bei der Beteiligung mehrerer Hersteller, da Kommunikations- und Interpretationsfehler unwahrscheinlicher und im Rahmen des herstelleigene Risikomanagements besser zu handhaben sind.

Das vorliegende Weißbuch erörtert die Notwendigkeit einer Standardisierung basierend auf dem aktuellen Stand der Medizingerätevernetzung im OP. Darüber hinaus werden Standardisierungslücken herausgearbeitet, welche für eine reibungslose Kommunikation von Medizingeräten im OP noch zu füllen sind. Abschließend werden die notwendigen Schritte identifiziert, um den Standardisierungsbedarf zu decken.
3.1 Einordnung in das OR.NET-Projekt

Am 01. September 2012 startete das vom BMBF geförderte Forschungsprojekt OR.NET mit insgesamt 51 Kooperationspartnern. Das Ziel des Forschungsprojekts ist es, im vorwettbewerblichen Bereich der medizintechnischen Forschung und Entwicklung grundlegende Konzepte für die sichere dynamische Vernetzung von Komponenten in OP und Klinik zu erarbeiten, zu evaluieren und in Normierungsaktivitäten zu überführen.

Neben den Lücken in den technisch orientierten Standards wie DIN EN ISO 11073, der beispielsweise für den Bereich der Medizingerätekommunikation besonders relevant ist, zeigt sich auch ein Bedarf nach mehr Normung und Standardisierung darin, dass die in Abbildung 1 dargestellten Domänen bisher weitestgehend unabhängig voneinander entwickelt werden, jedoch in der Praxis zusammen interagieren und funktionieren müssen. Produkt- und Betriebssicherheit sind dabei Querschnittsthemen, die für alle anderen sichergestellt werden müssen.

Abbildung 1: Für die Normung und Standardisierung relevante Domänen
3.2 Motivation Weissbuch

Die OR.NET-Partner setzen sich für die internationale Normung und die Standardisierung von Objekten, Schnittstellen, Services und Vokabularien ein und streben die Publikation als internationale Standards an, die zu „fair, reasonable and non-discriminatory terms“ („FRAND“-Bedingungen) verfügbar sind. Dies senkt die Markt-Eintrittsschwelle für Hersteller vernetzter Geräte und fördert den Wettbewerb.

Die einschlägigen Standards der Informations- und Kommunikationstechnologien (IKT) entstehen daher aus gutem Grund in großen Konsortien, die darüber hinaus ihre Planungen gerne offenlegen, um bereits durch die Publikation der Normungs-Roadmap einen verdrängenden Effekt gegen aufkeimende konkurrierende Festlegungen zu erzielen.

3.3 Begriffsdefinitionen

3.3.1 Allgemein

Dieser Abschnitt erläutert kurz die Begriffe aus den Bereichen Standardisierung und Normung, die zum Verständnis des Textes hilfreich sind.

Zusammenhang zwischen Norm und de-facto-Standard
(wie Industrienorm oder Werksnorm)

Normung bezeichnet die planmäßigen Vorgänge und Tätigkeiten zum Schaffen und Inkraftsetzen von Regelungen, mit denen materielle Gegenstände und immaterielle Verfahren vereinheitlicht werden.

3.3.2 Norm

Dokument, das mit Konsens erstellt und von einer anerkannten Institution angenommen wurde und das für die allgemeine und wiederkehrende Anwendung Regeln, Leitlinien oder Merkmale für Tätigkeiten oder deren Ergebnisse festlegt, wobei ein optimaler Ordnungsgrad in einem gegebenen Zusammenhang angestrebt wird [1].

3.3.3 Spezifikation

3.3.4 Standard

Begriff, der in dieser Normungs-Roadmap zum besseren Verständnis auch Normen, Industrie-standards und Profile sowie alle Formen von technischen Spezifikationen subsumiert.

3.3.5 Normung

3.3.6 Standardisierung

Technische Regelsetzung ohne zwingende Einbeziehung aller interessierten Kreise und ohne die Verpflichtung zur Beteiligung der Öffentlichkeit [5].

3.3.7 Interoperabilität

Die Fähigkeit zweier oder mehrerer Systeme oder Komponenten, Informationen auszutauschen und die ausgetauschten Informationen auch sinnvoll nutzen zu können [6].

3.3.8 Konformität

Konformität bezeichnet die Erfüllung einer Anforderung [7].

3.3.9 Medizinprodukt

Alle einzeln oder miteinander verbunden verwendeten Instrumente, Apparate, Vorrichtungen, Software, Stoffe oder anderen Gegenstände, einschließlich der vom Hersteller speziell zur Anwendung für diagnostische und/oder therapeutische Zwecke bestimmten und für ein ein-wandfreies Funktionieren des Medizinprodukts eingesetzten Software, die vom Hersteller zur Anwendung für Menschen für folgende Zwecke bestimmt sind:
• Erkennung, Verhütung, Überwachung, Behandlung oder Linderung von Krankheiten;
• Erkennung, Überwachung, Behandlung, Linderung oder Kompensierung von Verletzungen oder Behinderungen;
• Untersuchung, Ersatz oder Veränderung des anatomischen Aufbaus oder eines physiologischen Vorgangs;
• Empfängnisregelung

und deren bestimmungsgemäße Hauptwirkung im oder am menschlichen Körper weder durch pharmakologische oder immunologische Mittel noch metabolisch erreicht wird, deren Wirkungsweise aber durch solche Mittel unterstützt werden kann [8], zuletzt geändert durch [9]; identisch mit [10]). Im Text der Normungs-Roadmap wird auch oft der Begriff Medizingerät verwendet, das in der Regel als Synonym zu Medizinprodukt verstanden werden kann.

3.3.10 Medizinisches elektrisches Gerät, ME-Gerät

Elektrisches Gerät, das ein Anwendungsteil hat oder das Energie zum oder vom Patienten überträgt bzw. eine solche Energieübertragung zum oder vom Patienten anzeigt und für das Folgende gilt:

a) ausgestattet mit nicht mehr als einem Anschluss an ein bestimmtes Versorgungsnetz und

b) von seinem Hersteller zum Gebrauch bestimmt:

• in der Diagnose, Behandlung oder Überwachung eines Patienten,
• zur Kompensation oder Linderung einer Krankheit, Verletzung oder Behinderung [11]

3.3.11 Use Case

Dieses Kapitel beschreibt den aktuellen Stand der Technik bezüglich des interoperablen Datenaustausches im OP. Dazu werden nach einer kurzen Einleitung zunächst in Abschnitt 4.1 die bestehenden regulatorischen Anforderungen sowie das daraus resultierende Risikomanagement dargestellt und anschließend in Abschnitt 3 die für den OP relevanten technischen Kommunikationsstandards und dazugehörigen Vokabularien beschrieben.

4.1 Einleitung

Für die in Kapitel 5 dargestellte Analyse, welche fehlende Standard-Bausteine für eine sichere interoperable Vernetzung im OP identifizieren soll, muss zunächst die derzeitige Ausgangslage im Detail beschrieben werden. Dieses Kapitel beschreibt daher einerseits die Ausgangslage bezüglich regulatorischer Anforderungen, zu denen auch das Risikomanagement gezählt wird, und andererseits den Stand der verfügbaren Standards und Normen, die für den Einsatz im OP geeignet scheinen, dort bereits im Einsatz sind oder wesentlich mit ihm in Berührung kommen.

4.2 Regulatorische Anforderungen

Dieser Abschnitt beschreibt die regulatorischen Anforderungen, die durch gesetzlich verankerte EU-Richtlinien oder auch nationale Gesetze und Standards ergeben. Abbildung 2 zeigt einen schematischen Überblick. Anschließend werden die dazugehörigen Risikomanagementmaßnahmen dargestellt.

Abbildung 2: Richtlinien- und Normenübersicht
Den rechtlichen Rahmen für die Standardisierung bietet die EU-Richtlinie 93/42/EWG [8] und deren Änderungen [9]. Im Anhang der Richtlinie wird erläutert, welche Angaben die Gebrauchsanweisung eines Medizinprodukts enthalten muss. Diese Angaben deuten direkt daraufhin, dass eine interoperable (und damit vernetzte) Verwendung von Medizinprodukten in der Regel vorgesehen, also möglich ist, ohne per se als „unsicher“ eingestuft zu werden.

Auszug aus den Grundlegenden Anforderungen des Anhang I, Abschnitt 13.6., Richtlinie 93/42/EWG [13]:

Die Gebrauchsanweisung muss nach Maßgabe des konkreten Falles folgende Angaben enthalten:

1. bei Produkten, die zur Erfüllung ihrer Zweckbestimmung mit anderen medizinischen Einrichtungen oder Ausrüstungen kombiniert oder an diese angeschlossen werden müssen: alle Merkmale, soweit sie zur Wahl der für eine sichere Kombination erforderlichen Einrichtungen oder Ausrüstungen erforderlich sind;

2. alle Angaben, mit denen überprüft werden kann, ob ein Produkt ordnungsgemäß in stalliert worden ist und sich in sicherem und betriebsbereitem Zustand befindet, sowie Angaben zu Art und Häufigkeit der Instandhaltungsmaßnahmen und der Kalibrierungen, die erforderlich sind, um den sicheren und ordnungsgemäßen Betrieb der Produkte fortwährend zu gewährleisten;

Da Normen und Spezifikationen zu einer Selbstverständlichkeit des Alltags geworden sind, werden Normen und Spezifikationen angewendet, ohne zu wissen, was sich dahinter verbirgt. Häufig gibt es auch Vorurteile über die Normung. Neben der Annahme, dass die Normung nur was für „Großunternehmer sei“, gibt es eine Unkenntnis über die Regeln zur Erarbeitung von Normen und die Aussage, dass das Reglement und der Formalismus zu kompliziert seien.

Auf Grund der Anzahl der beteiligten Stakeholder und der daraus resultierenden Konsensfindung wird kritisiert, dass die Normung zu lange dauert. Allerdings gibt es mit der Möglichkeit der Spezifikation als ein vornormatives Dokument ein Werkzeug, den Prozess zu beschleunigen.
4.2.1 Mechanismen des Risikomanagements

Die folgenden Ausführungen beziehen sich auf Festlegungen der DIN EN ISO 14971 und DIN EN 80001-1 wie in Abbildung 2 dargestellt und fassen wichtige Punkte zusammen.

Die Gliederung des Risikomanagement-Prozesses ist wie folgt definiert:

- Risikoanalyse
- Risikobewertung
- Risikokontrolle
- Informationen aus den der Produktion nachgelagerten Phasen

Wichtig ist dabei, dass der Risikomanagement-Prozess sich auf den gesamten Lebenszyklus der vernetzten Medizinprodukte erstreckt, d. h. von der Idee/Produktkonzept bis zur Entsorgung. Abbildung 3 stellt die oben genannten Begriffe und dazugehöriger Unterprozesse gemäß DIN EN ISO 14971 schematisch dar.

Abbildung 3: Risikomanagementprozess

Im Zusammenhang mit der Vernetzung mehrerer Produkte spielt die Zweckbestimmung der einzelnen Medizinprodukte eine große Rolle: Wenn durch die Integration lediglich die Zweckbestimmung erfüllt wird, greift das Risikomanagement des Herstellers. Falls jedoch durch die Integration ein neues System entsteht, ist ein neues Risikomanagement durch den Betreiber (Integrator) sicherzustellen. In letzterem Fall beschreibt auch die Normenreihe DIN EN 80001 den Rahmen und die Verantwortung des Betreibers vernetzter Medizinprodukte dies konsistent zu den gleichermaßen anwendbaren Verfahren der Risikobewertung und -behandlung nach DIN EN ISO 14971.

Der Zuverlässigkeit aller netzwerkbezogenen Funktionen kommt hierbei also unmittelbare Bedeutung für die Sicherheit des Patienten zu. Erfahrungsgemäß sind für die zuverlässige Funktion der Netzwerkkommunikation stabile Protokolle, exakte Spezifikationen und umfassende Konformitätskriterien nötig, wobei Standards dazu einen wesentlichen Beitrag zur Unterstützung liefern können.

4.3 Stand der Normen und Standards

4.3.1 Struktur der Normungs- und Standardisierungslandschaft

Die nationalen Normungsorganisationen sind jeweils Mitglieder in ISO, IEC, CEN und CENELEC.

*) Weitere nationale Organisationen (z.B. SAE, ANSI/UL International)

Abbildung 4: Normungs- und Standardisierungsorganisationen
4.3.2 Standardisierungsorganisationen und ausgewählte Standards

4.3.2.1 DIN und DKE

Überblick
Die Aufgabe des DIN (Deutsches Institut für Normung e. V.) ist es, zum Nutzen der Allgemeinheit unter Wahrung des öffentlichen Interesses in geordneten und transparenten Verfahren die Normung und Standardisierung anzuregen, zu organisieren, zu steuern und zu moderieren. Die Arbeitsergebnisse dienen der Innovation, Sicherheit und Verständigung in Wirtschaft, Wissenschaft, Verwaltung und Öffentlichkeit sowie der Qualitätssicherung und Rationalisierung und dem Arbeits-, Umwelt- und Verbraucherschutz.

Die DKE ist das deutsche Mitglied in der IEC und im CENELEC.

Weitergehende Informationen verwandter Interoperabilitätszenarien zeigt die deutsche Normungs-Roadmap “SMART HOME + BUILDING”, herausgegeben vom VDE im November 2013 [16]. Sie enthält eine umfassende Darstellung der Normung und Standardisierung allgemein sowie für den Bereich „Ambient Assisted Living“.

Anwendung im OP

4.3.2.2 DICOM

Überblick

Weiterentwicklung der Standards

4.3.2.2 DICOM

Überblick

Anwendung im OP

Der überwältigende Teil der DICOM-Netzwerkdienste verwendet ein OSI-basiertes, DICOM-eigenes Netzwerkprotokoll. Die Inhalte selbst (Bilder, Workflow-Informationen, Messdaten, Befunde, etc.) werden in einem binären, Tag basierten Format abgelegt. Die Geräte, die bereits heute auf DICOM-Daten zugreifen, nutzen in aller Regel dieses Netzwerkprotokoll und sind in der Lage, das binäre DICOM-Datenformat zu lesen und ggf. zu schreiben.

Grundsätzlich verwenden eher “große” Geräte wie z. B. mobile C-Bögen oder auch OP-Planungssysteme DICOM-Dienste, um anhand von Bildern und Videos OPs zu planen oder zu dokumentieren. Auf kleinen Geräten ist der Standard dagegen eher nicht verbreitet, was verschiedene Gründe hat: Zum einen möchten kleine Geräte im einfachsten Fall nur einzelne Messdaten oder Steuerungsdaten (z. B. Fußschalter für OP-Tisch) übertragen und benötigen weder DICOM-Eingangsdaten noch DICOM-Dokumente, um ihre Ergebnisse zu dokumentieren. Zum anderen verlangt die Unterstützung des DICOM-Datenformats und Netzwerkprotokolls häufig Ressourcen, die Kleingeräte (z. B. Pulsoximeter) nicht oder noch nicht besitzen.

Weiterentwicklung des Standards

Schließlich wird eine aktualisierte Fassung (Status “Letter Ballot Text”) dem DICOM-Komitee zur Abstimmung vorgelegt. Falls dieses zustimmt, ist die Erweiterung augenblicklich offizieller Teil des DICOM-Standards (Status “Final Text”) und kann von Herstellern in Geräten/Produkten verwendet werden. Abgelehnte oder schon früher abgebrochene Erweiterungen bekommen den Status “Cancelled”.

4.3.2.3 HL7

Überblick
HL7 Standards besitzen weltweit eine große Verbreitung und werden durch die in vielen Ländern etablierten nationalen HL7 Affiliates verbreitet und ggf. an spezifische nationale Anforderungen angepasst. Umgekehrt bringen die Affiliates nationale Anforderungen in die internationale Standardisierungsarbeit ein und wirken an der Ausarbeitung der Standards mit.

Die Serie der HL7 Version 2 Standards ist weit verbreitet und dient der Systemintegration innerhalb von Krankenhäusern, zum Beispiel zur Kommunikation von Patienten- und Leistungsdaten sowie Leistungsanforderungen und Befunden. HL7v2 ist neben DICOM der am weitesten verbreitete Standard im klinischen Umfeld. In der klinikinternen Kommunikation werden in Deutschland vor allem folgende Nachrichtentypen verwendet:

- ADT (Admission , Discharge , Transfer): Patienten-Stammdaten und Aufenthaltsdaten
- ORU (Observation Results): Versenden von Labor- und Befunddaten
- MDM (Medical Document Management): Übermittlung medizinischer Dokumente

HL7v2 ist ein textbasiertes Nachrichtenformat, bei dem die Inhalte in Nachrichtensegmente und -felder unterteilt werden.

Anwendung im OP
In Deutschland werden von den verfügbaren HL7-Standards im klinischen Bereich vorrangig die nachrichtenbasierten HL7v2 (Version 2) Standards eingesetzt. Auch international wird in erster Linie HL7 Version 2 eingesetzt.

Für die Bereitstellung medizinischer Dokumentation in Form strukturierter Dokumente wurde der HL7 Standard CDA (Clinical Document Architecture) entwickelt. Die Information wird hier zusammen mit allen relevanten Kontextinformationen in modellbasierten XML-Strukturen abgebildet. CDA ist auf Modularisierung und Wiederverwendung angelegt und bildet u. a. die technische Grundlage des bvitg-Arztbriefs. CDA wird in Modellprojekten epSOS (Smart Open Services for European Patients) erfolgreich eingesetzt und vieles spricht dafür, dass CDA sich als Standard für die abteilungs- und institutionsübergreifenden Nutzung patientenbezogener medizinischer Dokumentation durchsetzen wird.

Weiterentwicklung des Standards

Diese nächste Generation der HL7-Standards befindet sich noch in der Entwicklung. FHIR (Fast Healthcare Interoperability Resources) als Austauschformat ist ebenfalls XML- oder JSON-basiert und einfacher zu implementieren als HL7 V3. FHIR ist zurzeit ein so genannter Draft Standard for Trial Use, in dem die Anwendungsfähigkeit geprüft wird.

Weitere Details zum Abstimmungsverfahren finden sich auf der Internetseite von HL7 International [20].
4.3.2.4 IEEE

Überblick

Anwendung im OP
Weiterentwicklung des Standards

4.3.2.5 Continua Health Alliance

Überblick

Ausblick: IEEE Projekt 11073 20401 “Common Network Services”

Zurzeit werden weitere Details ausgearbeitet. Ein aktueller Stand der Diskussion findet sich in einer Präsentation von IEEE, welche im September 2013 in Cambridge gehalten wurde [26].

Anwendung im OP

Weiterentwicklung des Standards

Die definierten Schritte sind:

2. Zusammenführung: Identifizieren Mitglieder bei ähnlichen Vorschlägen Interesse, so werden die Vorschläge in einem Anwendungsfall zusammengefasst.

3. Festlegungen zum Anwendungsfall: In „Use-Case-Teams wird der Vorschlag zur weite-
ren Diskussion mit der Technical Working Group (TWG) ausgearbeitet.

4. Bewertung der Machbarkeit: Die Gremien TWG, Technical Certification-, Regulatory-
und Marketing Working Group analysieren und Bewerten die Erfolgskriterien des
Anwendungsfalls.

5. Abstimmung der Promoter Mitglieder. Die Erfolgskriterien werden von Promoter
Mitglieder bewertet und z. B. mit einer 2/3 Mehrheit in das Portfolio aufgenommen.

6. Übergabe an TWG: Ein als erfolgreich eingestufter Anwendungsfall wird an TWG
weitergeleitet. Das Gremium erstellt einen Entwicklungsplan, um danach die entspre-
chenden Festlegungen für ein Test und Zertifizierungsprogramm zu entwickeln.
4.3.2.6 IHE (Integrating the Healthcare Enterprise)

Überblick

Anwendung im OP

Traditionell entstammt IHE aus der Radiologie und hat sich von dort aus auf andere Bereiche im Krankenhaus (und darüber hinaus) ausgedehnt. Einige auch im OP notwendige Bausteine, wie der Abgleich von Patienteninformationen (demographische Daten), Auftragsdaten, oder das Abrufen von DICOM-Bildern zur Verwendung im OP, werden bereits in Integrationsprofilen aus den Technical Frameworks der Radiologie und der “IT Infrastructure” beschrieben. Diese Profile gehen jedoch nicht auf die besonderen Bedingungen im OP ein, wie z. B. die begrenzte Verfügbarkeit, Rechenzeit, Speicher und die dynamische Zusammenschaltung der Geräte.

Ein dediziertes IHE Technical Framework namens “Patient Care Devices” (PCD) [36] versucht diese Lücken zu schließen. Zurzeit werden Lösungen für vier Szenarien (Integrationsprofile) angeboten:

- Device Enterprise Communication: Versenden von “Beobachtungen” von Medizingeräten an Informationssysteme wie das Krankenhausinformationssystem, üblicherweise in regelmäßigen Zeitabständen,
- Point-of-Care Infusion Verification (PIV): Senden von Infusionsdaten (Timing, Menge, etc.) an Infusionspumpen,
- Implantable Device – Cardiac – Observation (IDCO): Datenübertragung von implantierten Geräten wie z. B. Herzschrittmachern oder Herzrhythmus,
- Alert Communication Management (ACM): Versenden und Weiterverteilen von Alarmsignale, z. B. wenn ein Gerät feststellt, dass der angeschlossene Patient einen zu niedrigen Puls aufweist,

Für den Bereich PCD bei IHE besteht eine enge Zusammenarbeit mit der “Continua Health Alliance” (siehe „4.3.2.5 Continua Health Alliance“). Eine tatsächliche Verwendung im OP ist den Verfassern derzeit nicht bekannt.
4.3.2.7 Web Services Discovery and Web Services Devices Profile (WS-DD)

Überblick

Das Geräteprofile DPWS (Devices Profile for Web Services) wurde entwickelt, um sichere Web Services auf Geräten mit eingeschränkten Ressourcen zu implementieren. DPWS nutzt eine Untermenge der heute über 50 verfügbaren Web Services Standards, die für vernetzte Geräte geeignet sind und passt diese entsprechend an.

DPWS ist für die Steuerung von Geräten geeignet, wobei ein Control Point (Steuereinheit) die Client-Seite und das Gerät die Server-Seite implementieren muss. Die Implementierung der Server-Seite (auf dem Gerät) verlangt die geringsten Ressourcen, der Ressourcenbedarf der Client-Seite hängt vom Anwendungsszenario ab, da bestimmte Teile der Spezifikation nicht umgesetzt werden müssen, wenn sie nicht benötigt werden. DPWS ist auch für die Kommunikation zwischen Geräten geeignet. Dafür müssen allerdings beide Seiten auf einem Gerät implementiert werden, was einen größeren Ressourcenbedarf verlangt.

DPWS nutzt XML und XML Schema und setzt auf SOAP auf. Zum Auffinden (Discovery) von Geräten und deren Diensten verwendet DPWS WS-Discovery, WS-MetadataExchange und Weiterentwicklung der IHE-Spezifikationen

DPWS ist durch die Umsetzung in verschiedenen Software-Protokoll-Stacks als Open-Source für verschiedene Programmiersprachen und eingebettete Systeme verfügbar [38] [39].

Anwendung im OP

MDPWS erweitert die Funktionalität von DPWS um weitere Funktionen, die im klinischen Einsatz erforderlich sind, um die Patientensicherheit zu gewährleisten, wie beispielsweise Fernsteuerung und Streaming. BICEPS kommt dem Begriff des medizinischen Geräteprofils näher, da diese Protokollspezifikation ein Domäneninformationsmodell (DIM) definiert, mit dem die im Netzwerk zur Verfügung gestellten Fähigkeiten eines Medizinproduktes und auch sein Status bekanntgegeben werden können. Des Weiteren werden Serviceschnittstellen definiert, die die Netzwerkschnittstelle für den Informationsaustausch beschreiben. BICEPS basiert im Wesentlichen auf den Ideen des DIM aus DIN EN ISO 11073 Standards.

Weiterentwicklung innerhalb WS-DD

Ziele des Technischen Komitees sind die Definition

- von WS-Discovery – einem leichtgewichtigen dynamischen Discovery Protokolls, mit dessen Hilfe andere Web Services leicht gefunden werden können,
- eines SOAP-über-UDP-Bindings, inklusive der Message Patterns, der Adressierungs- und der Sicherheitsmechanismen, sowie
- des Devices Profile Web Services – einem Web-Services-Profil, das minimalen Anforderungen festlegt, die bei der Implementierung zu erfüllen sind, um sicheres Web Service Messaging, Discovery, Description und Eventing auf ressourcen-beschränkten Geräten zu ermöglichen.

In dem OASIS WS-DD-Standard wurden Fehler beseitigt und viele Änderungen durchgeführt. Zu den wesentlichen Änderungen gehören die nachfolgend genannten.

- Anpassung an die neuesten Web Services-Spezifikationen, wie z. B. WS-Addressing, WS-Policy.
- Für DPWS wurden die Sicherheitsmechanismen grundlegend überarbeitet und vereinfacht.
- Im Vergleich zur bisherigen DPWS Version 1.0 wurden in der nun als Standard vorgelagenden Version 1.1. neue Namensräume (Namespaces) spezifiziert.

Denkbar wäre, einen neuen Standard bei OASIS einzubringen, was nur als Mitglied möglich ist. Mit einer OASIS-Mitgliedschaft kann man jedem bestehendem Komitee als Mitglied oder Beobachter beitreten.

4.3.2.8 DDS und RTSP

Überblick

DataReader und DataWriter können an die Middleware Quality of Service (QoS)-Anforderungen stellen, z. B. bezüglich einer verlässlichen Zustellung von Nachrichten, Bandbreite, Deadlines, usw. Der Standard kann kostenlos heruntergeladen werden [48]. Aktuell ist die Version 1.2.

Anwendung im OP

Weiterentwicklung des Standards

4.3.2.9 smartOR OSCB-Protokoll

Überblick
Vor OR.NET haben sich schon verschiedene Forschungsprojekte mit einer Plug-and-Play-Vernetzung im OP beschäftigt, u. a. das vom Bundesministerium für Wirtschaft und Technologie geförderte Projekt "smartOR" [54] (smart Operating Room). An dem Projekt waren verschiedene Stakeholder aus der Industrie, Kliniken und Forschung beteiligt.

Das aus dem Projekt hervorgegangene Normvorhaben beschreibt drei Bereiche:

1. Kommunikationsprotokoll mit Festlegungen für die herstellerübergreifende Plug-and-Play-Vernetzung von medizinischen Geräten in Kombination mit einer serviceorientierten Architektur (SOA)

2. Risikomanagement für die Zulassung vernetzter medizinischer Geräte

3. Konzepte für effiziente Mensch-Maschine-Interaktion

Der Fokus in diesem Dokument liegt auf der Darstellung des Kommunikationsprotokolls. Die anderen beiden Bereiche werden nur kurz angesprochen.

Alle Systeme in einer smartOR-Netzwerk kommunizieren über einen gemeinsamen Kommunikationsbus, den "Open Surgical Communication Bus" (OSCB). Jedes System bietet im Sinne einer SOA gewisse Dienste an, die von anderen Systemen genutzt werden können. Innerhalb dieses Netzwerks spielen drei Systeme eine besondere, vordefinierte Rolle:

- Service-Manager: Alle Systeme melden sich beim Service-Manager an, sobald sie verfügbar sind.
- Access-Manager: Der Access-Manager regelt, welches System auf welche Dienste anderer Systeme zugreifen darf.
smartOR-Netzwerk

Endoskop, Navigation, OP-Tisch

Service-Manager

Open Surgical Communication Bus

Gateway

Anästhesie-Arbeitsplatz

Zugriffsrechte-Manager

Event-Manager

Chirurgie-Arbeitsplatz

Abbildung 6: OSCB-Komponenten

Zentrale Dienste

OSCB (Open Surgical Communication Bus)

<table>
<thead>
<tr>
<th>Service Manager</th>
<th>Event Manager</th>
<th>Accesscontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Provider</td>
<td>Service Provider</td>
<td>Service Provider</td>
</tr>
</tbody>
</table>

OSCB Schnittstelle

Medizinprodukt 1

OSCB Schnittstelle

Medizinprodukt 2

OSCB Schnittstelle

Medizinprodukt n

Grundsätzlich muss jedes OSCB-Gerät sich über einen “Friendly Name”, die Firmware-Version und Herstellerkennung identifizieren können. Zur Kommunikation mit anderen Systemen stehen drei verschiedene Dienstfamilien bereit:

- **DeviceIdentificationService**: Mit den drei hierin angesiedelten Diensten lässt sich abfragen, welche Eigenschaften und Funktionen das Gerät bereitstellt, das Gerät auf Bereitschaft testen, sowie die Registrierung durch den Service Manager durchführen.

- **DeviceControlService**: Basierend auf den Funktionen und Eigenschaften, die durch den DeviceIdentificationService dem Service Manager bekannt gemacht werden, stellen die Dienste des DeviceControlService nun entsprechende Aufrufe bereit, um Gerätedaten (z. B. Blutdruck) auszulesen oder zu setzen (z. B. Durchflussgeschwindigkeit einer Infusion festlegen). Zusätzlich besteht ein Aufruf, um das Gerät eine Aktion ausführen zu lassen (z. B. Endoskopie-Kamera Weißabgleich einstellen).

- **DeviceNotificationService**: Dieser Dienst erlaubt das Empfangen von Events anderer Systeme. Um diese Events vom Event Manager zu empfangen, muss sich ein System vorher beim Event Manager dafür eintragen (“subscribe”).

Anwendung im OP
Das OSCB-Kommunikationsprotokoll wurde in erster Linie im Rahmen des smartOR-Forschungsprojekts implementiert und demonstriert. Eine Verwendung in regulären auf den Markt erhältlichen Produkten ist den Autoren nicht bekannt.

Weiterentwicklung des Standards
Tatsächlich handelt es sich bei der smartOR-Spezifikation um ein Normvorhaben und Vorschlag für eine IEC PAS, das heißt noch nicht um einen endgültigen Standard. Der Fortgang der Standardisierung kann durch Stellungnahmen an DIN/DKE per Post, E-Mail oder Datei beeinflusst werden. Grundsätzlich ist das DIN als “runder Tisch” für alle Beteiligten eines Themas offen für die Mitarbeit an Standardisierungs- und Normungsvorhaben. Neben Stellungnahmen kann also auch stärkerer Einfluss genommen werden durch direkte Mitarbeit als Normungsexperte.

4.3.2.10 Medical Device Plug-and-Play (MDPnP)

Überblick
Gemäß MDPnP (Medical Device Plug-and-Play) Internetseite handelt es sich bei MDPnP um ein Programm, das Interoperabilität von Medizingeräten verwirklichen möchte [55]. Dazu wird ein viergeteilter Ansatz verfolgt:

- Entwicklung und Unterstützung adäquater Standards,
- Erkennen, Analysieren und Modellierung klinischer Anwendungsfälle, sowie Anforderungsanalyse für die Systementwicklung mit Ziel einer offenen Architektur,
- Zusammenführen von klinischen, regulatorischen (insbesondere FDA – Food and Drug Administration) und herstellerspezifischen Erwartungen,
- Implementierung von Prototypen für Anwendungsfälle in offener Entwicklungsumgebung (“open ‘sandbox’”).

Der Bezug zur FDA sowie die Zusammensetzung des Teams deuten auf eine starke Ausrichtung auf die USA hin, wenn auch sicherlich der Anspruch des Projekts darüber hinausgeht.

Teile des Projekts werden über das NIH (National Institute of Health), das US-amerikanische Gesundheitsministerium, gefördert. Eines der letzten assoziierten Projekte “Quantum Medical Device Interoperability (QMDI)” verfolgt seit 2010 das Ziel, die Anforderungen für die angestrebte Interoperabilität aber auch Architektur und Software zu entwickeln sowie entsprechende Test- und Validierungswerkzeuge bereitzustellen [56].
Anwendung im OP

Zurzeit scheint es sich nicht um Spezifikationen zu handeln, die in der Praxis bereits Verwen-
dung finden. Am Massachusetts General Hospital / CIMIT (Center for Integration of Medicine
and Innovative Technology) existiert ein Testlabor, in dem verschiedene Geräte prototypisch
miteinander verbunden werden. Dazu gehören Ventilatoren, Pulsoximeter, Infusionspumpen,
Monitore und weitere Geräte. Inwieweit die Kommunikation zwischen den Geräten gelöst ist,
welche Hersteller beteiligt sind und welche zentralen spezifischen entwickelten "MDPnP-Kom-
ponenten" der vorgeschlagenen "ICE"-Architektur eingesetzt werden, geht aus den öffentlichen
verfügbaren Informationen nicht hervor.

- Cross-Enterprise Document Sharing (XDS),
- Cross-Enterprise Media Interchange (XDM),
- Cross-Enterprise Document Reliable Interchange (XDR).

XDS und seine verwandten Spezifikationen wurden ursprünglich von der IHE geschaffen,
um den Zugriff auf verteilte Patientenakten zu ermöglichen. Da die XD*-Profile aber „content-
agnostic“ sind, also auf das Dokument, das sie als reine „Nutzlast“ kapseln, in keiner Weise
zugreifen, können damit prinzipiell alle Arten von Dokumenten verwaltet bzw. verteilt werden.
Die XD*-Profile definieren dafür Metadaten, die eine CDA-ähnliche Struktur haben. Die einzelnen
Profile unterscheiden sich folgendermaßen:

In XDS wird der Austausch von medizinischen Dokumenten über verteilte Dokumentenserver mit
einer zentralen Dokumenten-Registry beschrieben („pull“). Es werden dabei die Dokumente, die
auf dem zentralen Register oder in Archiven gespeichert sind, durch Metadaten beschrieben,
die auf verbindlich festgelegten Indexdaten, einer vereinbarten IT-Infrastruktur und einer glo-
balen Patientenidentifikation beruhen. Die somit genormten Metadaten bieten eine transparente
und verteilte Lösung von Dokumenten mit Zugriff durch verschiedene Institutionen im Gesund-
heitsbereich. Die eigentliche Kommunikation erfolgt bei XDS über Web-Dienste und zwar in der
Regel verschlüsselt und gesichert durch eine zertifikatbasierte Authentifizierung der beteiligten
IT-Systeme. Für weitere Informationen siehe [48].

XDM beschreibt eine Datei- und Verzeichnisstruktur zum Austausch von Dokumenten über
diverse Arten von Datenträgern wie z. B. CD-R oder USB-Sticks.

XDR nutzt die gleiche technische Basis wie XDS, definiert darauf aufbauend aber ein zuverläs-
giges Nachrichtensystem, mit dem Dokumente eines Patienten direkt („peer to peer“) an den
Empfänger geschickt werden („push“), anstatt auf einer zentralen Infrastruktur für den Austausch
bereitgestellt zu werden [49]. Wie bei XDS basiert die Kommunikation auf gesicherten Web-
Diensten.
Aus dem Stand der Technik geht hervor, dass sich bisher kein Standard zur Vernetzung von Medizingeräten im OP durchsetzen konnte. Deutschland hat demnach gute Chancen zum Leitmarkt in der Vernetzung von Medizinprodukten zu werden. Das versetzt Deutschland und die deutschen Hersteller, die auf diesem weltweit wichtigen Markt agieren, in die Lage, einen entsprechenden Trend zu setzen und mit einem Wettbewerbsvorteil zu starten.

5.1 IHE als mögliches Bindeglied

Tatsächlich stellt IHE, auch wenn es sich selbst nie als Standard bezeichnet, bereits so etwas wie einen horizontalen Standard dar:

- IHE adressiert auf Basis von typischen klinischen Use Cases mögliche Lösungen, die immer auf der Verwendung bestehender Standards beruhen.

- In der Domäne der Informationssysteme (KIS, RIS, PACS) decken die bestehenden Use Cases bereits einen Großteil der notwendigen Krankenhauskommunikation zwischen diesen Systemen ab, z. B. die Verteilung von Auftrags- und Patienteninformationen im Krankenhaus oder den regulären Durchlauf von Patienten in der Radiologie.

- IHE definiert auch im Technical Framework “Patient Care Devices” (PCD) für den Bereich der Medizingeräte Integrationsprofile, die in sehr eingeschränktem Umfang zur Datenübertragung im OP verwendet werden können. Dazu kommt in erster Linie DIN EN ISO 11073 als Nomenklatur und HL7 Version 2 als Nachrichtenformat zum Einsatz.
Auf der anderen Seite fehlen IHE viele Bausteine:

- Nur sehr wenige Gerätetypen werden unterstützt.
- Insgesamt setzt IHE den Fokus bisher eher auf die Anbindung von Medizingeräten an Informationssysteme und nicht auf Kommunikation der Medizingeräte untereinander. Zudem werden zwar mit dem Patienten verbundene Geräte adressiert, jedoch wird nicht direkt der in vielerlei Hinsicht kritische(re) OP-Bereich angesprochen.

Die eher eingeschränkten Möglichkeiten von IHE im OP-Bereich lassen sich auch damit erklären, dass IHE immer nur auf bestehende Standards aufsetzt. Da diese zurzeit nicht mehr Funktionalität bieten, verharrt IHE ebenfalls in Warteposition.

5.2 OSCB, DPWS und MDPnP

Wie im Stand der Technik geschildert, existieren weltweit durchaus Ansätze, die einzelne Beiträge zur Vernetzung von Medizingeräten im OP liefern. Besonders wichtig erscheint der OSCB-Standard, aus den folgenden Gründen:

- Der OSCB-Standard entspricht bereits einem gewissen deutschen Teil-konsens, der von verschiedenen Stakeholdern im Forschungsprojekt smartOR entwickelt wurde.
- OSCB zielt bereits auf eine Plug-and-Play-Vernetzung ab und wurde auch so ausgestaltet, dass er verschiedene Kategorien von Geräten unterstützen kann.
- Auf Basis des OSCB-Standards wurden bereits für den Markt bestimmte Produkte gestaltet.
- OSCB setzt auf bewährte, standardisierte Web Service-Technologien (WS-*) auf, für die bereits Software-Werkzeuge existieren und eine Praxistauglichkeit nachgewiesen ist.
- Die auf WS-* aufsetzenden Technologien wie DPWS (Device Profile for Web Services) versuchen, die Web Service-Technologien auf die besonderen Anforderungen von Geräten mit beschränktem Speicherplatz und beschränkter Rechenleistung abzustimmen. Erste praktische Umsetzungen zeigen, dass DPWS dieses zu leisten vermag.

Die vorliegende Fassung von OSCB ist allerdings noch nicht fehlerfrei und behandelt auch nicht alle notwendigen Aspekte.

Der MDPnP-Ansatz scheint offenbar in den USA eine besondere Rolle zu spielen und wird von der Regierung mit Geldern aktiv gefördert. Die öffentlich verfügbaren Spezifikationen beschreiben jedoch nur eine erste "High-Level"-Architektur und gehen nicht auf die technischen Details ein. In der Praxis scheint der Standard deshalb auch bisher nicht relevant zu sein.
Auf Basis der vorangegangenen Analyse lassen sich folgende grundsätzliche Schlüsse ziehen:

- IHE eignet sich hervorragend, um klinische Use Cases im OP-Bereich strukturiert zu beschreiben und mit bestehenden Standards umzusetzen. Sofern letztere noch nicht (oder nur in unvollständiger Weise) verfügbar sind, müssen sie entsprechend (weiter) entwickelt werden.
- Die in OR.NET entwickelten Use Cases sollten in IHE Use Cases transkribiert werden. Eine Priorisierung und möglicherweise eine Konsolidierung der Use Cases sollten dem vorangehen.
- Vorhandene Use Cases (insbesondere im PCD-Bereich) sollten, sofern dies im Rahmen der OR.NET-Use Cases notwendig erscheint, angepasst werden.
- OSCB scheint als Protokoll und Nachrichtenformat scheint OSCB derzeit der aussichtsreichste Standardkandidat zu sein. Aus diesem Grund sollte OSCB so erweitert werden, dass er den OR.NET-Anforderungen gerecht wird. Fehlende Teile müssen ergänzt werden, insbesondere:
 - Dezentralisierung der bestehenden Architekturkomponenten
 - Integration mit KIS und bildgebendem Bereich, das heißt Transformation von Teilen dieser Daten in OSCB-Format oder Direktzugriff (z. B. auf Bildarchiv) erlauben („Vermittlung“ via OSCB).
 - Plug-and-Play: Netzwerkconfiguration und Patientenkontext “automatisch” herstellen
- Details zum Risikomanagement, insbesondere Maßnahmen, wie Ad-Hoc-Netzwerke im OP im Risiko beherrschbar gemacht werden können. Lücken in DIN EN ISO 11073 müssen noch geschlossen werden:
 - Anwendungsbereich und Zweck der DIN EN ISO 11073-Familie erweitern
 - DIN EN ISO 11073-Datenmodell für OP-Geräte erweitern
 - Standard um weitere Geräteprofile ergänzen
 - Terminologien erweitern
 - SOA-basiertes Netzwerkprotokoll für den DIN EN ISO 11073-Transport entwickeln (basierend auf OSCB-Standard)
- Wie im restlichen Krankenhaus, spielen auch im OP eine wichtige Rolle:
 - Technische Umsetzung des Datenschutzes und anderer Sicherheitsvorkehrungen. Das endgültige Architekturkonzept muss entsprechende Vorkehrungen treffen und ggf. müssen bestehende Standards ergänzt werden.
Bestehende Ansätze bei IHE, DICOM oder auch Continua zeigen, dass Conformance und Testen eine große Relevanz besitzen. Deshalb sollte das folgende unternommen werden:

- Anforderungen an Hersteller bezüglich der Gerätedokumentation erarbeiten
- Anforderungen an Hersteller bezüglich Gerätefunktionalität definieren, um von "Konformität" zum (endgültigen) Standard sprechen zu können
- Durchführen einer Analyse, welche Test- und Zertifizierungsmaßnahmen notwendig sind und wie diese ggf. gestaltet werden können
- Rechtsgrundlage für das Implementieren und Betreiben schaffen

Die aufgeführten Handlungsempfehlungen bedürfen in späteren Versionen dieses Dokuments noch einer detaillierten Ausgestaltung, Priorisierung und terminlichen Festlegung, geben aber schon jetzt einen guten Überblick auf die noch zu leistende Arbeit im Bereich Standardisierung.
<table>
<thead>
<tr>
<th>Abkürzung/Akronym</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>Alert Communication Management</td>
</tr>
<tr>
<td>ADT</td>
<td>Admission Discharge Transfer</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ASN.1</td>
<td>Abstract Syntax Notation 1</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BAR</td>
<td>Billing Account Record</td>
</tr>
<tr>
<td>BER</td>
<td>Basic Encoding Rules</td>
</tr>
<tr>
<td>BMWi</td>
<td>Bundesministerium für Wirtschaft und Energie</td>
</tr>
<tr>
<td>bvitg</td>
<td>Bundesverband Gesundheits-IT</td>
</tr>
<tr>
<td>CDA</td>
<td>Clinical Document Architecture</td>
</tr>
<tr>
<td>CIMIT</td>
<td>Center for Integration of Medicine and Innovative Technology</td>
</tr>
<tr>
<td>CORBA</td>
<td>Common Object Request Broker Architecture</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>DDS</td>
<td>Data Distribution Service for Real-time Systems</td>
</tr>
<tr>
<td>DFT</td>
<td>Detailed Financial Transactions</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>DIM</td>
<td>Domäneninformationsmodell</td>
</tr>
<tr>
<td>DPWS</td>
<td>Devices Profile for Web Services</td>
</tr>
<tr>
<td>DRG</td>
<td>Deutsche Röntgengesellschaft</td>
</tr>
<tr>
<td>DSTU</td>
<td>Draft Standards for Trial Use</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FHIR</td>
<td>Fast Healthcare Interoperability Resources</td>
</tr>
<tr>
<td>FuE</td>
<td>Forschung und Entwicklung</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level Seven</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>Abkürzung/Akronym</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>ICE</td>
<td>Integrated Clinical Environment</td>
</tr>
<tr>
<td>IDCO</td>
<td>Implantable Device - Cardiac - Observation</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEEE-SA</td>
<td>IEEE Standards Association</td>
</tr>
<tr>
<td>IHE</td>
<td>Integrating the Healthcare Enterprise</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnologien</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPEC</td>
<td>Infusion Pump Event Communication</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared Data Association</td>
</tr>
<tr>
<td>KIS</td>
<td>Krankenhausinformationssystem</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>MDM</td>
<td>Medical Document Management</td>
</tr>
<tr>
<td>MDPnP</td>
<td>Medical Device Plug-and-Play</td>
</tr>
<tr>
<td>MDPWS</td>
<td>Medical Devices Profile for Web Services</td>
</tr>
<tr>
<td>ME-Gerät</td>
<td>Medizinisch elektrisches Gerät</td>
</tr>
<tr>
<td>MPG</td>
<td>Medizinproduktgesetz</td>
</tr>
<tr>
<td>NesCom</td>
<td>New Standards Committee</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>OASIS</td>
<td>Organization for the Advancement of Structured Information Standards</td>
</tr>
<tr>
<td>OMG</td>
<td>Object Management</td>
</tr>
<tr>
<td>OP</td>
<td>Operationssaal</td>
</tr>
<tr>
<td>ORM</td>
<td>Order Management</td>
</tr>
<tr>
<td>OSCB</td>
<td>Open Surgical Communication Bus</td>
</tr>
<tr>
<td>Abkürzung/Akronym</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OSI</td>
<td>Open Systems Interconnection</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving and Communication System</td>
</tr>
<tr>
<td>PAR</td>
<td>Project Authorization Request</td>
</tr>
<tr>
<td>PAS</td>
<td>Publicly Available Specification</td>
</tr>
<tr>
<td>PCD</td>
<td>Patient Care Devices</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PIV</td>
<td>Point-of-Care Infusion Verification</td>
</tr>
<tr>
<td>QMDI</td>
<td>Quantum Medical Device Interoperability</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RDQ</td>
<td>Retrospective Data Query</td>
</tr>
<tr>
<td>RevCom</td>
<td>Standards Review Committee</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>RIS</td>
<td>Radiologieinformationssystem</td>
</tr>
<tr>
<td>RTM</td>
<td>Rosetta Terminology Mapping</td>
</tr>
<tr>
<td>RTSP</td>
<td>Real-Time Publish/Subscribe Protocol</td>
</tr>
<tr>
<td>SOA</td>
<td>Serviceorientierte Architektur</td>
</tr>
<tr>
<td>SOAP</td>
<td>Urpsprünglich: Simple Object Access Protocol</td>
</tr>
<tr>
<td>SR</td>
<td>Structured Reporting</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control</td>
</tr>
<tr>
<td>UDDI</td>
<td>Universal Description, Discovery and Integration</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>VDE</td>
<td>VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.</td>
</tr>
<tr>
<td>WS</td>
<td>Web Service</td>
</tr>
<tr>
<td>WS-DD</td>
<td>Web Services Discovery and Web Services Devices</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>

[57] ISO/IEEE 11073-.

